Abstract
In this work, we investigated how the reductive activation of CO2 with an atomic bismuth model catalyst changes under aprotic solvation. IR photodissociation spectroscopy of mass-selected [Bi(CO2 )n ]- cluster ions was used to follow the structural evolution of the core ion with increasing cluster size. We interpreted the IR spectra by comparison with density-functional-theory calculations. The results show that CO2 binds to a bismuth atom in the presence of an excess electron to form a metalloformate ion, BiCOO- . Solvation with additional CO2 molecules leads to the stabilization of a bismuth(I) oxalate complex and results in a core ion switch.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.