Abstract

The effect of the solvent polarity on excitation delocalization/localization in multibranched push-pull chromophores has been thoroughly explored by combining steady state absorption and fluorescence, as well as femtosecond transient spectral measurements. We found that the excited-state relaxations of the push-pull chromophores are highly dependent on both solvent polarity and the polar degree of the excited intramolecular charge transfer states. The symmetry of multibranched chromophores is preserved in less polar solvents, leading to excitation delocalization over all of the branches because of the negligible solvent reaction field. In contrast, symmetry is broken for multibranched chromophores in more polar solvents because of intense solvent reaction field, and the excitation is consequently localized on one of the dipolar molecular branches. The results provide a fundamental understanding of solvent-dependent excitation delocalization/localization properties of the multibranched chromophores for the potential applications in nonlinear optics and energy-harvesting applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.