Abstract

The photoactive yellow protein (PYP) is an important model protein for many (photoactive) signaling proteins. Key steps in the PYP photocycle are the isomerization and protonation of its chromophore, p-coumaric acid (pCA). In the ground state of the protein, this chromophore is in the trans configuration with its phenolic oxygen deprotonated. For this paper, we studied four different configurations of pCA solvated in water with ab initio molecular dynamics simulations as implemented in CP2K/Quickstep. We researched the influence of the protonation and isomerization state of pCA on its hydrogen-bonding properties and on the Mulliken charges of the atoms in the simulation. The chromophore isomerization state influenced the hydrogen-bonding less than its protonation state. In general, more charge yielded a higher hydrogen-bond coordination number. Where deprotonation increases both the coordination number and the residence time of the water molecules around the chromophore, protonation showed a somewhat lower coordination number on two of the three pCA oxygens but much higher residence times on all of them. This could be explained by the increased polarization of the OH groups of the molecule. The presence of the chromophore also influenced the charge and polarization of the water molecules around it. This effect was different in the four systems studied and mainly localized in the first solvation shell. We also performed a proton-transfer reaction from hydronium through various other water molecules to the chromophore. In this small charge-separated system, the protonation occurred within 6.5 ps. We identified the transition state for the final step in this protonation series.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.