Abstract
Density functional theory calculations were applied to OH formations on stepped Pt electrodes of Pt[n(111) × (111)] (n = 3, 4, and 6) for examining solvation effects on the OH adsorbates. Results indicated that OH adsorbates at terrace sites are slightly destabilized by water molecules adsorbed at step sites forming 1-dimensional water chains whereas OH adsorbates at step sites are significantly destabilized by water molecules adsorbed at terrace sites forming 2-dimensional honeycomb structures. On stepped Pt surfaces with narrow terrace widths, water molecules cannot exist at terrace sites, and therefore, the solvation effects on OH adsorbates at step sites disappear. Hence, OH adsorbates are formed at step sites at a low potential region, ca. 0.3 V (standard hydrogen electrode (SHE)). When high-coverage CO adsorbates are present on the stepped Pt surfaces, water molecules cannot exist at the terrace sites either because strongly bound CO molecules exclude the water molecules. In such conditions, OH form...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.