Abstract

In this article, we briefly introduced our studies on solvation and rotational diffusion of solutes in room temperature ionic liquids (RTILs) by electron paramagnetic resonance with nitroxide spin probing method. Most of the rotational correlation times for the nitroxide radicals are within the range calculated on the basis of Stokes–Einstein–Debye hydrodynamic theory with stick and slip boundary conditions or Gierer–Wirtz theory except for smaller solutes in some RTILs with smaller BF4 and PF6 anions. In RTILs with 1-butyl-3-methylimidazolium as cation and BF4 or PF6 as anion, nitroxide radicals undergo rotational diffusion like supercooled liquids and nitroxide radical with smaller volume rotationally slips.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.