Abstract

The evolution of the concentrations of particles of two types that annihilate at collision is considered. The kinetic model describing the dynamics of the mixture is represented by a system of two first-order nonlinear partial differential equations. It is shown that the solutions of this model are related to the solutions of the inhomogeneous transport equations by the Backlund transform. Analytic solutions of the problem about penetration of particles of the first type from the left half-plane into the right half-plane occupied by the particles of the second type (the two-dimensional penetration problem or molecular beam problem) and of the problem of outflow of the particles of the first type from a circular source into a domain occupied by the particles of the second type are obtained. Possible generalizations of the model are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.