Abstract
In this article, for 0 ≤m<∞ and the index vectors q=(q_1,q_2 ,q_3 ),r=(r_1,r_2,r_3) where 1≤q_i≤∞,1<r_i<∞ and 1≤i≤3, we study new results of Navier-Stokes equations with Coriolis force in the rotational framework in mixed-norm Sobolev-Lorentz spaces H ̇^(m,r,q) (R^3), which are more general than the classical Sobolev spaces. We prove the existence and uniqueness of solutions to the Navier-Stokes equations (NSE) under Coriolis force in the spaces L^∞([0, T]; H ̇^(m,r,q) ) by using topological arguments, the fixed point argument and interpolation inequalities. We have achieved new results compared to previous research in the Navier-Stokes problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: JST: Engineering and Technology for Sustainable Development
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.