Abstract

We use replica-exchange molecular dynamics (REMD) to interrogate molecular structures and properties of four engineered dodecapeptides (in solution, in the absence of a surface) that have been shown to bind to quartz with different propensities. We find that all of the strong-binding peptides feature some polyproline type II secondary structure, have less conformational freedom, and feature fewer intrapeptide hydrogen bonds compared with the weak binder. The regions of contiguous proline content in a given sequence appear to play a role in fostering some of these properties of the strong binders. For preliminary insights into quartz binding, we perform lattice-matching studies between a grid corresponding with the quartz (100) surface and the strong-binding peptide REMD structures. Our findings indicate a commonality among the putative contact residues, even for peptide structures with very different backbone conformations. Furthermore, interpeptide interactions in solution are studied. Our preliminary findings indicate that the strong-binder interpeptide contacts are dominated by weak, nonspecific hydrophobic interactions, while the weak-binding peptide shows more variable behavior due to the distribution of charged residues. In summary, the solution structures of peptides appear to be significant. We propose that these differences in their intra- and interpeptide interactions can influence their propensity to bind onto a solid substrate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.