Abstract
In this paper, a study of both pure and 5% BaZrO33-doped YBCO low-fluorine coating solutions performed by 1 H-Nuclear Magnetic Resonance (NMR) spectroscopic techniques is presented. This investigation enabled us to unequivocally identify the chemical species involved in the solution aging process. It was found that the presence of traces of methanol, typically used for the preparation of the solutions, promoted methyl propionate formation. Since the methanol concentration reduction in time is not completely balanced by methyl propionate formation, it is supposed that additional esterification reactions involving other acids might occur. The presence of methyl propionate ester was not recognized in solutions obtained through a refining process in which residual methanol traces were fully removed. The modification in time of the solution composition was found to be in strong correlation with the degradation of the film properties for standard solution, whereas no degradation, in the same time frame, was observed for the films prepared with the refined solutions. Indeed, both YBCO and YBCO + 5% BaZrO 3 films, grown with aged refined solutions, exhibit critical temperature values above 91 K and microstructure comparable with the ones recorded in samples obtained with freshly prepared solutions. Even though the exact role of the ester in the YBCO phase formation and film quality could not be identified yet, some possible mechanisms have been proposed and discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.