Abstract

We report solution processed pristine diketopyrrolopyrrole (DPP) based polymer (PDPP3T) as hole transport layer (HTL) for perovskite (CH3NH3PbI3) solar cells. The pristine PDPP3T based perovskite solar cells achieved comparable photovoltaic performance (12.32%) as that (12.34%) of doped spiro-OMeTAD based cells. After exposing to air having 40% relative humidity at room temperature, PDPP3T based perovskite solar cells showed much slower degradation than spiro-OMeTAD cells. The PDPP3T based devices showed an efficiency decrease by 26.6% after being in air for 73h and 60.6% for 172h, while the spiro-OMeTAD cells exhibited a much larger efficiency decrease of 41.4% for 73h and 82.9% for 172h. The use of pristine PDPP3T does not require processing HTL in air and adding any additives such as lithium salt dissolved in acetonitrile, 4-tert-butylpyridine (TBP), which are needed for the spiro-OMeTAD HTL preparation. This prevents exposure of the perovskite layer to ambient air and avoids corrosion of perovskite layer by acetonitrile solvent and formation of PbI2.xTBP complex which leads to slow down the cell degradation and improves device stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.