Abstract

AbstractA cost‐effective, flexible, and transparent gas barrier has been a main pursuit of research into plastics electronics. However, it is difficult to realize a high‐performance gas barrier on a plastic substrate via a solution process at low temperature. Here, by introducing an interfacial photocatalytic reduction between TiOx and graphene oxide (GO) films, a solution‐processed and transparent gas barrier film is demonstrated using reduced GO (rGO)/TiOx. A dramatic photochemical reduction of GO occurs at the interface between TiOx and the GO film under ultraviolet irradiation, which allows the fabrication of dense and uniform gas barrier films via a solution process at temperatures below 100 °C. In addition, the closely packed structure in the rGO film results in a decreased water vapor transmission rate (WVTR) of 0.37 g m−2 day−1 even with a thin rGO (<13 nm)/TiOx (7 nm) film, leading to a high transmittance of over 80% in the visible range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.