Abstract

A series of high coplanar alternative linear small molecules with acceptor–donor–acceptor (A–D–A) structure containing electron-accepting tetrazine (Tz) moiety and electron-donating oligothiophenes (OTs) moiety, alkylated thiophene attached to both sides of the Tz moiety were designed and synthesized. The influences of varied oligothiophene length on small molecules’ optical and electrochemical properties, crystallization, self assembling morphology in blend film with (6,6)-phenyl-C61-butyric acid methyl ester (PC61BM), and photovoltaic properties for the application as donor materials in organic solar cells (OSCs) were studied. The optical and electrochemical properties of small molecules showed that the HOMO and LUMO energy levels were determined by the number of OTs moiety and electron-accepting ability of Tz in the alternative small molecules, respectively. Meanwhile, the varied OT moieties can significantly affect the hierarchical structures when mixed with PC61BM. The molecule with intermediate conjugate moity length showed the highest ordering in its crystalline state, as revealed by differential scanning calorimetry (DSC) and X-ray diffraction experiments, and best photovoltaic properties when blended together with PC61BM or (6,6)-phenyl-C71-butyric acid methyl ester (PC71BM) as active layer in photovoltaic devices. The results indicate that hierarchical structures controlled by adjusting the conjugate moity length of small molecules is an effective way to improve the performance of OSCs. The photovoltaic device based on TT(HTTzHT)2:PC71BM with 1% DIO additives showed the best performance, with a Jsc of 7.87mA/cm2 and a PCE of 3.24%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.