Abstract

We present a flexible and efficient method of solving site-site integral equations for polar molecular fluids. The numerical method is based on a combination of Newton-Raphson and Picard schemes first proposed by Gillan, together with the Ng method for handling Coulomb potentials. It is completely general and can be used with any closure or potential to solve for molecules of arbitrary symmetry. We apply the method to several model systems and demonstrate its superiority to the usual renormalization technique. For quadrupolar hard dumb-bells we find that, in contrast to the situation for neutral dumb-bells, approximate integral equation results depend strongly on the physically irrelevant hard core diameter associated with the centre of the dumb-bell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.