Abstract
A novel solution of the inverse Frobenius-Perron problem for constructing semi-Markov chaotic maps with prescribed statistical properties is presented. The proposed solution uses recursive Markov state disaggregation to construct an ergodic map with a piecewise constant invariant density function that approximates an arbitrary probability distribution over a compact interval. The solution is novel in the sense that it provides greater freedom, as compared to existing analytic solutions, in specifying the autocorrelation function of the semi-Markov map during its construction. The proposed solution is demonstrated by constructing multiple chaotic maps with invariant densities that provide an increasingly accurate approximation of the asymmetric beta probability distribution over the unit interval. It is demonstrated that normalised autocorrelation functions with components having different rates of decay and which alternate in sign between consecutive delays may be specified. It is concluded that the flexibility of the proposed solution facilitates its application towards modelling of random signals in various contexts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.