Abstract

A spreadsheet based solution of the similarity transformation equations of laminar boundary layer equations is presented. In this approach the nonlinear third order differential equations, for both the hydrodynamic and the thermal boundary layer equations, are discretesized using a simple finite difference approach which is suitable for programming spreadsheet cells. This approach was implemented to solve the similarity transform equations for a flat plate (Blasius equations). The thermal boundary layer result was used to obtain the heat transfer correlation for laminar flow over a flat plate in the form of Nu = Nu(Pr,Re). The relative difference between results of the present approach and those of published data are less than 1%. This approach can be easily covered in the undergraduate. Fluid Mechanics and Heat Transfer courses. Also, it can be incorporated in graduate Viscous Fluid Mechanics and Convection Heat Transfer courses. Application of the present approach is not limited to the flat plat boundary layer analysis. It can be used for the solution of a number of similarity transformation equations, including wedge flow problem and natural convection problems that are covered in graduate level courses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.