Abstract

The main goal of the study is the approximation of the solution to the Dirichlet boundary value problem (DBVP) of the heat equation on a rectangle by developing a new difference method on a grid system of hexagons. It is proved that the given special scheme is unconditionally stable and converges to the exact solution on the grids with fourth order accuracy in space variables and second order accuracy in time variable. Secondly, an incomplete block factorization is given for symmetric positive definite block tridiagonal (SPD-BT) matrices utilizing a conservative iterative method that approximates the inverse of the pivoting diagonal blocks by preserving the symmetric positive definite property. Subsequently, by using this factorization block hybrid preconditioning of the conjugate gradient (BHP-CG) method is applied to solve the obtained algebraic system of equations at each time level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.