Abstract

We consider the Navier--Stokes equations for viscous incompressible flows in the half plane under the no-slip boundary condition. In this paper we first establish a solution formula for the vorticity equations through the appropriate vorticity formulation. The formula is then applied to establish the asymptotic expansion of vorticity fields at $\nu\rightarrow 0$ that holds at least up to the time $c\nu^{1/3}$, where $\nu$ is the viscosity coefficient and $c$ is a constant. As a consequence, we get a natural sufficient condition on the initial data for the vorticity to blow up at the inviscid limit, together with explicit estimates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.