Abstract

The article presents an original method for determining the modulus of elasticity of natural materials. A studied solution was based on vibrations of non-uniform circular cross-section cantilevers solved using Bessel functions. The derived equations, together with experimental tests, allowed for calculating the material's properties. Assessments were based on the measurement of the free-end oscillations in time using the Digital Image Correlation (DIC) method. They were induced manually and positioned at the end of a cantilever and monitored in time using a fast Vision Research Phantom v12.1 Camera with 1000 fps. GOM Correlate software tools were then used to find increments of deflection on a free end in every frame. It provided us with the ability to make diagrams containing a displacement-time relation. To find natural vibration frequencies, fast Fourier transform (FFT) analyses were conducted. The correctness of the proposed method was compared with a three-point bending test performed on a Zwick/Roell Z2.5 testing machine. The presented solution generates trustworthy results and can provide a method to confirm the elastic properties of natural materials obtained in various experimental tests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.