Abstract

Interferon-tau (IFN-tau) is a novel cytokine that appears during fetal development of mammals. It is currently being investigated for treatment of viral infections and autoimmune diseases. In order to develop a commercial product, a stable formulation will need to be identified. In this study, the solution behavior of IFN-tau was studied using a variety of biophysical methods. The overall structure of IFN-tau is well defined, with the polypeptide chain folding into a four-helix bundle structure, much like other type 1 interferons. However, its solution behavior has not been characterized. The globular structure has a free energy of unfolding of approximately 4 kcal/mole at room temperature. IFN-tau was found to remain monomeric upon increasing the protein concentration, even up to 60 mg/mL. The overall structure of IFN-tau is maintained across a pH range of 2-8, but is significantly altered in the presence of nonaqueous solvents. However, IFN-tau appears to refold efficiently when diluted into an aqueous medium from a nonaqueous solution. This behavior allows the protein to be formulated in low water content formulations suitable for use in capsules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.