Abstract

Objective: To evaluate the effect of thrombomodulin on thrombin-mediated neutralization of plasminogen activator inhibitor 1 (PAl-1) activity which results in the enhancement of the fibrinolytic activity. Design: We studied the effect of recombinant human soluble TM (rhs TM) on the interaction between human thrombin and PAI-1. Its subsequent effect on tissue plasminogen activator (tPA)-induced lysis of PAl-1 enriched fibrin clot was also evaluated. Results: rhsTM abolished the high molecular weight complex formation between thrombin and PAl-1 and quenched the neutralization of PAl-1 activity by thrombin in a dose-dependent manner. rhsTM also caused dose-dependent inhibition of tPA-induced lysis of PAl-1 enriched fibrin clots in a purified system, which had been shown to be accelerated by increasing concentration of thrombin by neutralizing PAl-1 activity. This inhibition was not observed when PAl-1 was not present in the fibrin clot. Euglobulin clot lysis time (ECLT), which is determined by the balance between tPA and PAl-1, was prolonged by rhsTM. This prolongation was partially abolished by anti-PAl-1 polyclonal IgG, but was unaffected by potato carboxyl peptidase inhibitor. Conclusion: The inhibition of thrombin-dependent enhancement of fibrinolysis by TM appears to involve a mechanism of quenching of thrombin-mediated neutralization of PAl-1 activity which is independent of thrombin activatable fibrinolysis inhibitor (TAFl).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.