Abstract

BackgroundInsolubility is the main requirement for ideal root end filling material to provide perfect sealing ability. Moreover, alkalinity and bioactivity provide great chance for tissues healing and remineralization. So, the aim of this work was to evaluate the chemical composition, solubility, pH change, and calcium ion release of recently introduced commercial mineral trioxide aggregate (MTA) endodontic repair cement (Harvard, Universal HandMix MTA) compared with ProRoot MTA repair material.MethodsSolubility was evaluated after 7- and 14-day immersion time of specimens in phosphate buffer saline solution (PBS); the mean weight loss was evaluated and solubility was calculated as a percentage of the weight loss. For assessment of pH change and calcium ion release polyethylene tubes filled with the materials were soaked in distilled water for 7 and 14 days. Measurement of pH change was done by analytical pH meter. Concentrations of calcium ion release were measured using inductively coupled plasma optical emission spectroscopy. Data were statistically analyzed by independent sample t test and paired sample t test at 5% significance level.ResultsHarvard MTA endodontic cement showed significant lower solubility and higher pH values compared with that of ProRoot MTA. ProRoot MTA exhibited significant higher calcium ion release value after 14 days (P value ≤ 0.05).ConclusionHarvard, Universal HandMix MTA repair cement with its different chemical composition; exhibits a low solubility with enhanced alkaline pH value compared to ProRoot MTA repair material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.