Abstract

This paper presents new experimental data on some key physicochemical properties of original bioactive 6-(acetylamino)-N-(5-ethyl-1,3,4-thiadiazol-2-yl) hexanamide (AETH). Thermal analysis of the compound under study has been carried out using differential scanning calorimetry and thermogravimetric techniques. AETH solubility data in five pharmaceutically relevant solvents in the temperature range from 288.15 to 318.15 K have been obtained by the classic saturation shake-flask method. The bioactive compound has poor solubility in hexane and buffer solutions, while it is slightly soluble in selected alcohols. The experimental solubility results have been correlated by means of modified Apelblat and van’t Hoff equations. The selected thermodynamic models produced acceptable results. The Hansen solubility parameters and their components for AETH and solvents have been evaluated by using the van Krevelen–Hoftyzer atomic group contribution method. The ideal solubility and the solution activity coefficient at equilibrium in the selected solvents have been quantified based on experimental values of melting enthalpy and temperature. All the investigated solutions exhibit a positive deviation from ideality with the maximal solubility in alcohols. The equilibrium vapor pressure of the compound studied has been determined as a function of temperature in the range of 433.15–454.15 K by the transpiration method. The standard thermodynamic parameters of AETH sublimation have been calculated. It has been concluded that the high crystal lattice energy value equal to 131.5 kJ/mol is the dominant factor determining the poor solubility of the bioactive compound.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.