Abstract

We consider the existence and stability of solitons in generalized galileons, scalar field theories with higher-derivative interactions but second-order equations of motion. It has previously been proven that no stable, static solitons exist in a single galileon theory using an argument invoking the existence of zero modes for the perturbations. Here we analyze the applicability of this argument to generalized galileons and discuss how this may be avoided by having potential terms in the energy functional for the perturbations, or by including time dependence. Given the presence of potential terms in the Lagrangian for the perturbations, we find that stable, static solitons are not ruled out in conformal and (A)dS galileons. For the case of DBI and conformal galileons, we find that solitonic solutions moving at the speed of light exist, the former being stable and the latter unstable if the background soliton satisfies a certain condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.