Abstract

It is shown that solitons emerging from pulses launched with frequencies at, or close to, the zero-dispersion point in a single-mode optical fiber are ordinary bright solitons corresponding to the nonlinear Schrödinger equation. These solitons are inherently frequency shifted into the anomalous-dispersion regime, where the third-order dispersion acts as a small perturbation. We therefore conclude that an optical-soliton-based communication system should be designed with the carrier frequency in the anomalous-dispersion regime but not too close to the zero-dispersion point, where the formation of an unwanted dispersive-wave component would degrade the system performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.