Abstract
The generalized (2 + 1)-dimensional Date–Jimbo–Kashiwara–Miwa (gDJKM) equation, which can be used to describe some phenomena in fluid mechanics, is investigated based on the multi-soliton solution. Soliton molecules of the gDJKM equation are given by the velocity resonance mechanism. A soliton molecule containing three solitons is portrayed at different times. The invariance of the relative positions of three solitons confirms that they form a soliton molecule. Multi-order lumps are obtained by applying the long-wave limit method in the multi-soliton. By analyzing the dynamics of one-order and two-order lumps, the energy concentration and localization property for lump waves are displayed. In the meanwhile, a multi-soliton can transform into multi-order breathers by the complex conjugation relations of parameters. The interaction among lumps, breathers and soliton molecules can be constructed by combining the above comprehensive analysis. The interaction between a one-order lump and a soliton molecule is an elastic collision, which can be observed through investigating evolutionary processes. The results obtained in this paper are useful for explaining certain nonlinear phenomena in fluid dynamics.
Published Version
Join us for a 30 min session where you can share your feedback and ask us any queries you have