Abstract

Solid-state radical grafting of glycidyl methacrylate (GMA) onto poly(4-methyl-1-pentene) (PMP) was performed using supercritical carbon dioxide (scCO2) impregnation technology. The polymer films were firstly impregnated in the scCO2 phase with the GMA using benzoyl peroxide as thermal initiator. The grafting degree and surface morphology of the samples may be controlled by the following factors: time, temperature, and pressure of impregnation. A 23 factorial design to evaluate the main and interaction effects of such factors on the grafting of the PMP by GMA (grafting response) was elaborated from FTIR data. The superior and inferior limits of the levels were defined on basis of a P-x-y diagram for binary system CO2+GMA that provided the location of the transition curves of such a system. Better grafting response was obtained for pressure of 130bar, temperature of 70°C and time of 7h. The PMP-g-GMA films exhibited a thermal profile similar to that of the unmodified polymer. Adhesion characteristics of polymer films are dependent on grafting degree of GMA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.