Abstract
Riser operating modes are vital to designing a circulating fluidized bed (CFB) reactor for a required process of either a gas–solid or a gas–catalytic nature. Different operating modes provide different solids’ residence times and mixing behaviors, which define the reactions’ efficiency and yield. The literature demonstrates distinct operating modes resulting from observed differences in slip factors and the range of particle velocities and their associated residence time distribution. The present research uses positron emission particle tracking (PEPT) in a riser of B-type bed material to determine the different operating modes by measuring (i) particle velocities and residence time distribution, (ii) population densities of these particles in the cross-sectional area of the riser, and (iii) solids flow pattern at the bottom of the riser. Data treatment defines four distinct solids hold-up regimes in the riser and proposes a “phase diagram” depicting the existence of the different operating modes (dilute, dense, core-annulus and combined) as a function of the superficial gas velocity and solids circulation flux in the riser. The delineated regimes have good agreement with available literature data and known industrial operations. Comparison with literature data for risers using A-type powders is also fair. The diagram enables CFB designers to better delineate operating characteristics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.