Abstract

Formation of coordination networks is a complex process affected by a multitude of factors. Many synthetic strategies have been developed that attempt to control these factors and direct the structure of the final product. Coordination bond formation and structural assembly processes, however, typically take place either in the solution or solid states. In comparison, gas-phase network synthesis remains largely unexplored. Herein, two new two-dimensional coordination networks are obtained from the solid-gas phase reaction between ZnX2 (X=I, Br) and the redox-active 2,5,8-tri(4-pyridyl)1,3-diazaphenalene (HTPDAP) ligand. Their structures were solved by ab initio powder X-ray diffraction analysis and feature a novel Zn halide trimeric cluster. This strategy is contrasted with a conventional solvothermal synthesis, which led to a one-dimensional coordination polymer instead. The intrinsic electroactive properties of these materials were probed by solid-state cyclic voltammetry measurements, which revealed the presence of HTPDAP and halide-based processes. Chemical oxidation of the two-dimensional networks by using NOPF6 agent, unexpectedly, led to the formation of a nitrated analog of HTPDAP, the PF6 - salt of diprotonated 4,6,7,9-tetranitro-2,5,8-tris(4-pyridyl)diazaphenalene cation (denoted N-TPDAP), which was isolated and characterized. These results provide deeper insights into the oxidation process of HTPDAP-containing networks and uncover unique redox-induced chemical transformations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.