Abstract
In 1968, Shapiro published the suggestion that one could search for an electron dipole moment (EDM) by applying a strong electric field to a substance that has an unpaired electron spin; at low temperature, the EDM interaction would lead to a net sample magnetization that can be detected with a superconducting quantum interference device (SQUID) magnetometer. One experimental EDM search based on this technique was published, and for a number of reasons including high sample conductivity, high operating temperature, and limited SQUID technology, the result was not particularly sensitive compared to other experiments in the late 1970s. Advances in SQUID and conventional magnetometery led us to reconsider this type of experiment, which can be extended to searches and tests other than EDMs (e.g., test of Lorentz invariance). In addition, the complementary measurement of an EDM-induced sample electric polarization due to application of a magnetic field to a paramagnetic sample might be effective using modern ultrasensitive charge measurement techniques. A possible paramagnetic material is Gd-substituted yttrium iron garnet which has very low conductivity and a net enhancement (atomic enhancement times crystal screening) of order unity. Use of a reasonable volume (hundreds of ${\mathrm{cm}}^{3})$ sample of this material at 50 mK and 10 kV/cm might yield an EDM sensitivity of ${10}^{\ensuremath{-}32} \mathrm{e}\mathrm{}\mathrm{cm}$ or better, a factor of ${10}^{5}$ improvement over current experimental limits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.