Abstract

The cathode material Na4Fe3(PO4)2P2O7 (NFPP) has shown great potential for sodium-ion batteries (SIBs) due to its cost-effectiveness, prolonged cycle life, and high theoretical capacity. However, the practical large-scale production of NFPP is hindered by its poor intrinsic electron conductivity and the presence of a NaFePO4 impurity. In this study, we propose a mutually reinforcing approach involving Ti doping, mechanical nano treatment, and in situ carbon coating to produce Ti-NFPP via the solid-state methods of synthesis. Ti doping strengthens the covalent Fe-O interaction, hence accelerating the electron transfer and the redox reactions Fe2+/Fe3+. In situ carbon coating improves electrical conductivity and allows for accommodating the volumetric variation. Nanosized treatment promotes the uniform progression of solid-state reactions. The synthesized Na4Fe2.98Ti0.01(PO4)2P2O7 material (Ti-NFPP) exhibits promising electrochemical properties with an initial discharge specific capacity of 112.5 mA h g-1 at 0.1 C. A volumetric change of only 2.98% was observed during the de/sodiation process, indicating an enhanced reversibility of the crystal lattice. Moreover, it demonstrates exceptional cycling stability with a capacity retention rate of 97.2 mA h g-1 at 10 C over 5000 cycles. These findings offer a promising pathway for the large-scale production of Ti-NFPP in SIBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.