Abstract

X-ray analysis of [(Ph3P)4Ru(H)2] (1) prepared by a literature procedure [Young, R.; Wilkinson, G. Inorg. Synth. 1990, 28, 337] shows that 1 is cocrystallized with PPh3, explaining the previously reported observations of free phosphine in solutions of 1. Lattice PPh3-free forms of 1 have also been obtained, structurally characterized, and found to generate small quantities of uncoordinated PPh3 and another species (A) in solution. Against previous beliefs, however, A is not [(Ph3P)3Ru(H)2] (2), but [(Ph3P)3Ru(H2)(H)2] (3) that forms in the reaction of 1 with adventitious water. This reaction apparently occurs via PPh3 loss from 1 to give 2, followed by H2O coordination, Ru(H)(OH2)/Ru(H2)(OH) rearrangement, H2 loss, and dimerization to give [(Ph3P)4Ru2(H)2(μ-OH)2] (4). The H2 thus produced is trapped with 2 to give 3. Complexes 3·0.5C6H6, 3·2THF, 4·2H2O, [(Ph3P)3Ru(N2)(H)2] (5), and [(Ph3P)2(H)Ru(μ-H)3Ru(PPh3)3]·0.5THF (6·0.5THF) have been structurally characterized for the first time. Also for the first time, a single-crystal X-ray diffraction study of the long-known “[(Ph3P)4RuCl2]” (7) has been performed to finally demonstrate that 7 is, in fact, [(Ph3P)3RuCl2]·PPh3, precisely as proposed by Hoffman and Caulton as early as 1975 [Hoffman, P.R.; Caulton, K.G. J. Am. Chem. Soc. 1975, 97, 4221].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.