Abstract
Sorption reactions occurring at mineral/water interfaces are of fundamental importance in controlling the sequestration and bioavailability of nutrients and pollutants in aqueous environments. To advance the understanding of sorption reactions, development of new methodology is required. In this study, we applied novel (31)P solid-state nuclear magnetic resonance (NMR) spectroscopy to investigate the mechanism of phosphate sorption on aluminum hydroxides under different environmental conditions, including pH (4-10), concentration (0.1-10 mM), ionic strength (0.001-0.5 M), and reaction time (15 min-22 days). Under these conditions, the NMR results suggest formation of bidentate binuclear inner-sphere surface complexes was the dominant mechanism. However, it was found that surface wetting caused a small difference. A small amount (<3%) of monodentate mononuclear inner-sphere surface complexes was observed in addition to the majority of bidentate binuclear surface complexes on a wet paste sample prepared at pH 5, which was analyzed in situ by a double-resonance NMR technique, namely, (31)P{(27)Al} rotational echo adiabatic passage double resonance (REAPDOR). Additionally, we found that adsorbents can substantially impact phosphate sorption not only on the macroscopic sorption capacity but also on their (31)P NMR spectra. Very similar NMR peaks were observed for phosphate sorbed to gibbsite and bayerite, whereas the spectra for phosphate adsorbed to boehmite, corundum, and γ-alumina were significantly different. All of these measurements reveal that NMR spectroscopy is a useful analytical tool for studying phosphorus chemistry at environmental interfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.