Abstract

AbstractIn this work, cetyltrimethyl ammonium bromide and methacryloyloxyethyhrimethyl ammonium chloride were used to prepare organophilic montmorillonite (O‐MMT). Then, polypropylene (PP)–clay nanocomposites were prepared by the in situ grafting polymerization of styrene (St)‐containing O‐MMT onto PP with tert‐butyl perbenzoate as an initiator in the solid state. Fourier transform infrared spectroscopy, gel permeation chromatography, transmission electron microscopy, and X‐ray diffraction were applied to study the structure of the layered silicate and modified PP. The surfaces of the composites and, thus, the distribution of the clay in the PP matrix were characterized by scanning electron microscopy. The rheology and mechanical properties were studied and are discussed. According to the characterization results, OMMT and St were already grafted onto the PP main chain. Also, the intercalated structure of montmorillonite could be stabilized, and a stable exfoliated structure could be attained. Namely, intercalated PP/OMMT nanocomposites were obtained. The rheological results clearly show that these PP/OMMT nanocomposites had long‐chain‐branched structures. The peroxide modification of PP had minor effects on the tensile and bending strengths of the modified PP; however, this modification resulted in a significant reduction in the impact strength. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.