Abstract

Solid films are usually metastable or unstable in the as-deposited state, and they will dewet or agglomerate to form islands when heated to sufficiently high temperatures. This process is driven by surface energy minimization and can occur via surface diffusion well below a film's melting temperature, especially when the film is very thin. Dewetting during processing of films for use in micro- and nanosystems is often undesirable, and means of avoiding dewetting are important in this context. However, dewetting can also be useful in making arrays of nanoscale particles for electronic and photonic devices and for catalyzing growth of nanotubes and nanowires. Templating of dewetting using patterned surface topography or prepatterning of films can be used to create ordered arrays of particles and complex patterns of partially dewetted structures. Studies of dewetting can also provide fundamental new insight into the effects of surface energy anisotropy and facets on shape evolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.