Abstract

Densification and mechanical behavior of graphite-free and graphite-doped ZrB2–TiC composites were investigated. Spark plasma sintering was used to achieve near fully-dense composites. Microstructural and phase analysis were carried out via scanning electron microscopy and X-ray diffraction spectroscopy, to illustrate the sintering and toughening mechanisms in the fabricated samples. Results indicated that 1 wt% graphite nano-flakes can improve the hardness of the composite. However, 3% drop in relative density and ~6% decrease in indentation fracture toughness were observed. The formation of TiB2 and ZrC was verified in both TiC-contained composites, although B4C was recognized as the byproduct of reactive sintering in graphite-doped composite. Moreover, the microstructural analysis and the peak shifts in XRD pattern indicated the formation of a solid solution between the ZrB2 and TiB2 phases. Higher hardness of the graphite-doped sample was also attributed to the formation of B4C as a superhard interfacial phase. Toughening mechanisms as well as possible chemical reactions which result in the in-situ formed reinforcement phases were also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.