Abstract

The solid phase epitaxial growth of 3C–SiC, 2–5nm thick, on (001) Si by annealing 1–2nm carbon overlayers has been investigated by transmission electron microscopy and X-ray photoelectron spectroscopy. High-temperature annealing in the range of 850–950°C results in solid phase cube-on-cube epitaxial growth of SiC films. This is accompanied by the formation of nanopores below the SiC epilayer in the Si substrate. Such nanopores, formed with truncated octahedron morphology consisting of {111} and (001) facets, are annihilated by diffusion of Ge deposited onto the SiC surface. It was also observed that the Ge islands on top of SiC exhibit a cube-on-cube orientation relation with SiC and the Ge overlayer reduces the density of faults in SiC considerably.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.