Abstract

The solubilities and the physicochemical properties (densities, viscosities, refractive indices, conductivities, and pH) in the liquid–solid metastable system (NaCl–KCl–CaCl 2–H 2O) at 288.15 K have been studied using the isothermal evaporation method. Based on the experimental data, the dry-salt phase diagram, water-phase diagram and the diagram of physicochemical properties vs. composition in the system were plotted. The dry-salt phase diagram of the system includes one three-salt co-saturated point, three metastable solubility isotherm curves, and three crystallization regions corresponding to sodium chloride, potassium chloride and calcium chloride hexahydrate. Neither solid solution nor double salts were found. Based on the extended Harvie–Weare (HW) model and its temperature-dependent equation, the values of the Pitzer parameters β (0), β (1), C ϕ for NaCl, KCl and CaCl 2, the mixed ion-interaction parameters θ Na,K, θ Na,Ca, θ K,Ca, Ψ Na,K,Cl, Ψ Na,Ca,Cl, Ψ K,Ca,Cl, the Debye–Hückel parameter A ϕ and the standard chemical potentials of the minerals in the quaternary system at 288.15 K were obtained. In addition, the average equilibrium constants of metastable equilibrium solids at the same temperature were obtained using a method derived from the activity product constant for the metastable system. Using the standard chemical potentials of the minerals and the average equilibrium constants of solids at equilibrium, the solubility predictions for the quaternary system are presented. A comparison between the calculated and experimental results shows that the predicted solubilities obtained with the extended HW model using the average equilibrium constants agree well with experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.