Abstract
The influence of the polar, aprotic solvent propylene carbonate on the interfacial structure of the ionic liquid (IL) 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate on sapphire was investigated by high-energy x-ray reflectivity. Experiments at solvent concentrations between 17 mol. % and 83 mol. % bridge the gap between diluted electrolytes described by the classical Gouy-Chapman theory and pure ionic liquids. Analysis of our experimental data revealed interfacial profiles comprised of alternating anion and cation enriched regions decaying gradually into the bulk liquid. With increasing solvent concentration, we observed a decrease in correlation length of the interfacial layering structure. At high ion concentrations, solvent molecules were found to accumulate laterally within the layers. By separating like-charged ions, they reduce their Coulomb repulsion. The results are compared with the bulk structure of IL/solvent blends probed by x-ray scattering and predictions from fundamental fluid theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.