Abstract

Oxidative stress of neurons caused by a series of complex neuropathological processes will induce certain neurodegenerative disorders including epilepsy. Curcumin (Cur) is an effective natural antioxidant compound; however, the poor bioavailability obstructs its neural protective applications. In this study, Cur is encapsulated in solid lipid nanoparticles (SLNs) for better neuroprotective efficacy. In vitro study certified that Cur-SLNs functioned obviously better against neuronal apoptosis than Cur, by significantly decreasing the level of free radical and reversing mitochondrial function through the activation of the Bcl-2 family. In vivo experiments showed that SLNs transported Cur through the blood-brain barrier (BBB). The behavioral performance of epileptic mice was improved by Cur-SLNs, with more NeuN but less TUNEL positive cells observed in hippocampus. The in vivo mechanism was also explored. Cur-SLNs reduced neuronal apoptosis through Bcl2 family and P38 MAPK pathways. Overall, Cur-SLNs have better protective effects toward oxidative stress in neurons than free Cur both in vitro and in vivo, which suggests they may be a promising agent against neurodegenerative disorders including epilepsy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.