Abstract

The effects of acidity and variation in concentration of acid sites of dodecatungstophosphoric acid (DTP), supported DTP and montmorillonite-K catalysts were studied for various organic reactions such as the hydroxyalkylation of phenols to bisphenols, intramolecular rearrangement of benzyl phenyl ether (BPE) to 2-benzyl phenol (2-BP) and selective cleavage of tert-butyldimethylsilyl (TBDMS) ether into the corresponding alcohol. Both dodecatungstophosphoric acid (DTP) impregnated on silica (SiO2) and montmorillonite catalysts showed the highest catalyst activity with 90–95% selectivity to bisphenol for the hydroxyalkylation of phenols to give bisphenol. Temperature Programmed Desorption (TPD) of ammonia and activity results of various catalysts showed that an appropriate combination of both strong and weak acidic sites in the catalyst was highly desirable for high bisphenol selectivity. A 10% DTP/SiO2 catalyst was found to be highly selective for the cleavage of TBDMS ether into the corresponding alcohol at room temperature giving a high TON of 9.5 × 105 even after the 4th recycle. DTP was also found to be a promising solid acid catalyst for the intramolecular rearrangement of BPE giving 2-BP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.