Abstract
Lunar In‐Situ Resource Utilization (ISRU) processes require thermal energy at various temperatures. Chemical recovery process (pyrolysis, gas‐solid reactions, gas‐liquid or three‐phase reactions and desorption) requires thermal energy at temperatures from 1000 K to 2500 K. Manufacturing processes (hot liquid processing, sinter forming, composite forming, welding, etc.) can be accomplished with thermal energy at temperatures 1200 K ∼ 1800 K. For these materials process applications, solar thermal power can be effectively utilized. Physical Sciences Inc. has been developing a innovative solar power system in which solar radiation is collected by the concentrator which transfers the concentrated solar radiation to the optical waveguide transmission line made of low loss optical fiber. In this paper we will present the recent progress of the solar thermal power source being developed at PSI, and discuss potential applications of the system to Lunar ISRU processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.