Abstract
Anatase N-doped TiO2 nanoparticles were synthesized using ultrasound at low frequency and room temperature. The samples characterized by techniques including XRD, TEM, HRTEM, FT-IR, XPS, and UV–Vis spectroscopy. XPS indicated the existence of nitrogen as an anion dopant within the TiO2 lattice. The solar photocatalytic activity of N-doped TiO2 studied for the degradation and complete mineralization of Diclofenac (DCF). The results showed that the catalytic activity of the nanoparticles related to the operating conditions in the synthesis such as temperature and time of sonication. DCF degradation followed the pseudo-first-order kinetics model under different conditions. Results showed that photogenerated electrons on the catalyst surface played an important role in the mechanism of photocatalytic degradation of DCF. It also confirmed that in the presence of oxygen, the formation of oxidative species such as singlet oxygen and superoxide radicals had major roles in the degradation of DCF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Iranian Journal of Chemistry & Chemical Engineering-international English Edition
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.