Abstract

A novel method to extract the seven parameters of the double-diode model of solar cells using the current–voltage (I-V) characteristics under illumination and in the dark is presented. The algorithm consists of two subroutines which are alternatively run to adjust all the parameters of the cell in an iterative process. Curve fitting of the light I-V characteristics ensures accuracy in the prediction of the maximum power point, whereas simultaneously fitting the dark I-V characteristics results in a set of physically meaningful parameters that provide information about the physical performance of the photovoltaic devices. Experimental I-V curves of in-house solar cells are used to validate the proposed parameter extraction method, which can be furthermore applied to other types of p–n junction-based photovoltaic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.