Abstract

The possible role of the Sun's planetary-induced spin-orbit dynamics in the generation of various solar oscillations is examined using simple approaches and heuristic models. Theoretically, the 22.5-yr dipole inversion magnetic cycle and the recently described 17-yr neutral line topology cycle can be derived from the non-linear mixing of two oscillations with periods of approximately 20 and 165 years. Oscillations with such periods are observed in two aspects of the Sun's spin-orbit dynamics. The 20-yr oscillation is the fundamental variation in the angular momentum of the solar body with respect to the solar system center-of-mass, while the 165-yr oscillation is the lowest-frequency component of the spin projection variations. It is shown that these two oscillations when mixed non-linearly yield, to a 1st-order approximation, the correct phase and frequency of the observed 17.5- and 22.5-yr magnetic cycles. By allowing an asymmetric shape to the 165-yr oscillation, the frequency modulation inherent in the Hale cycle (and sunspot cycle) is reproduced, yielding a more accurate estimate of solar activity. The asymmetric 165-yr oscillation matches the combination of the two lowest frequency components (165- and 84-yr periods) of the spin projection variations. Hemispheric sunspot asymmetry cycles, north/south differences in convective zone rotational velocities, and meridional flows are also shown to be expected byproducts of classical spin-orbit effects. Finally, the problem of low activity epochs (e.g., Maunder minimum) can be seen as a natural outcome of the interactions among the driving and driven oscillations involved in the conservation of solar system angular momentum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.