Abstract

Ca-based, MgAl2O4-stabilized sorbents for CO2 capture were prepared using a sol-gel approach. The chemical composition and morphology of the sorbents were characterized using scanning electron microscopy, X-ray diffraction and N2 adsorption analysis. The cyclic CO2 uptake of the materials was studied in a thermogravimetric analyzer and fluidized bed reactor. It was found that the calcium precursor and condensation catalyst strongly influenced the chemical composition and morphology of the sorbents and, in turn, their cyclic CO2 uptake capabilities. The material that was synthesized using Ca(CH3COO)2 as the calcium precursor and acetic acid as a condensation catalyst possessed the highest cyclic CO2 uptake, viz. 0.39g CO2/g sorbent after 10 cycles of calcination and carbonation, a value that compares favorably to the CO2 uptake of the reference limestone of 0.18g CO2/g sorbent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.