Abstract
We consider a polling system with a single server and multiple queues where customers arrive at the queues according to independent Poisson processes. The server visits and serves the queues in a cyclic order. The service discipline at all queues is exhaustive service. One queue uses processor-sharing as a scheduling policy, and the customers in that queue have phase-type distributed service requirements. The other queues use any work-conserving policy, and the customers in those queues have generally distributed service requirements. We derive a partial differential equation for the transform of the conditional sojourn time distribution of an arbitrary customer who arrives at the queue with processor-sharing policy, conditioned on the service requirement. We also derive a partial differential equation for the transform of the unconditional sojourn time distribution. From these equations, we obtain the first and second moments of the conditional and unconditional sojourn time distributions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.