Abstract
Integral bridges are preferred on infrastructure schemes as they have lower maintenance costs than a conventional jointed bridge. A key aspect of integral bridge design is the assessment of long-term passive resistance that develops in the abutment backfill due to seasonal movements of the superstructure. This resistance is currently defined by an intermediate earth pressure coefficient termed K*, and is typically evaluated using the limit equilibrium (LE) approach prescribed in BSI PD-6694-1:2011+A1:2020. This paper adopts the alternative numerical design approach and investigates the development of K* behind full-height abutments using soil–structure interaction (SSI) modelling in Plaxis-2D software. The study demonstrates that mobilised passive resistance is primarily a function of backfill and structural stiffnesses, and that the current LE approach does not capture the backfill resistance profile correctly. The effectiveness of the SSI method was verified by comparison to the LE method. The current study provides an SSI methodology that is an efficient design approach, and which is suitable for a wide variety of integral bridge arrangements beyond the current LE method applicability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Civil Engineers - Geotechnical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.