Abstract

A research team collected 3609 useful soil samples across the city of Syracuse, NY; this data collection fieldwork occurred during the two consecutive summers (mid-May to mid-August) of 2003 and 2004. Each soil sample had fifteen heavy metals (As, Cr, Cu, Co, Fe, Hg, Mo, Mn, Ni, Pb, Rb, Se, Sr, Zn, and Zr), measured during its assaying; errors for these measurements are analyzed in this paper, with an objective of contributing to the geography of error literature. Geochemistry measurements are in milligrams of heavy metal per kilogram of soil, or ppm, together with accompanying analytical measurement errors. The purpose of this paper is to summarize and portray the geographic distribution of these selected heavy metals measurement errors across the city of Syracuse. Doing so both illustrates the value of the SAAR software’s uncertainty mapping module and uncovers heavy metal characteristics in the geographic distribution of Syracuse’s soil. In addition to uncertainty visualization portraying and indicating reliability information about heavy metal levels and their geographic patterns, SAAR also provides optimized map classifications of heavy metal levels based upon their uncertainty (utilizing the Sun-Wong separability criterion) as well as an optimality criterion that simultaneously accounts for heavy metal levels and their affiliated uncertainty. One major outcome is a summary and portrayal of the geographic distribution of As, Cr, Cu, Co, Fe, Hg, Mo, Mn, Ni, Pb, Rb, Se, Sr, Zn, and Zr measurement error across the city of Syracuse.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.