Abstract
Soil microorganisms regulate the decomposition of organic matter. However, microbial activities can also be rate-limited by the resource in lowest supply. Arctic ecosystems are being exposed to pronounced climate warming, with arctic greening, treeline advance and shrubification resulting in increased plant-derived carbon (C) inputs to soils, and faster rates of decomposition releasing mineral nutrients, potentially shifting the limiting factor for microbial growth. Here we used a “space-for-time” approach across a subarctic ecotone (birch forest, tree line, shrub and tundra sites). N and P fertilization treatments were also applied in the field, to test whether changes in resource limitation could be induced through nutrient loading of soils. In these soils, we measured the responses of bacterial and fungal growth as well as soil respiration to full factorial additions of C, nitrogen (N) and phosphorus (P) (“limiting factor assays”: LFA) to infer how the limiting factor for microbial growth would be affected by future climate change. We found that bacteria were triple-limited by C, N and P, while fungi were co-limited by C and N, with no shift in the limiting factor for bacterial or fungal growth across the ecotone. However, bacterial responses to the LFA were stronger in the tundra, showing 9-fold stronger increases in response to LFA-CNP addition compared to that in the forest. In contrast, fungal responses to the LFA were stronger in the forest, showing a 120% higher growth in response to LFA-CN addition, with no detectable response to LFA-CN addition in the tundra. These contrasting results suggested competitive interactions for resources between the two decomposer groups. Fertilization in the field shifted the bacterial resource limitation, but had no effect on the limiting factor for fungal growth. Together, our findings suggest that resource limitations for soil microorganisms will not change due to future warming, but rather affect degrees of fungal-to-bacterial dominance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.