Abstract

Soil nutrient supply in rangelands depends on the maintenance and performance of soil microbiological communities. In this study we investigated how different rangeland management systems affects the structure and function of soil microbial communities in the clayey grassland and sandy savanna ecosystems, South Africa. These ecosystems differ in climate, soil and vegetation, with the sandy savanna ecosystem being drier, and encroached by bush. Soils were sampled under continuous and rotational grazing systems along a gradient with increasing grazing pressure. Analyses comprised of enzyme activities and phospholipid fatty acids (PLFA). The results revealed that the clayey grassland ecosystem displayed elevated enzyme activities and PLFA contents compared with the drier, sandy savanna ecosystem, irrespective of the rangeland management practices, likely because soil texture played a significant role in maintaining microbial communities. However, when microbial activity was normalized to carbon, nitrogen and microbial biomass, specific enzyme activities were significantly higher in the sandy savanna ecosystem, indicating a more efficient functioning of microbes here. Furthermore, these microbial parameters were more sensitive to grazing pressure in the clayey grassland ecosystem than other chemical or physical soil properties, whereas in the sandy savanna ecosystem this was not the case. Decreasing the grazing pressure on rangeland, as, e.g., done by commercial farmers practicing rotational grazing, appeared to stimulate microbial performance and thus microbial mediated nutrient mineralization with positive consequences on plant growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.